Notes & Techniques Gems & Gemology, Summer 2013, Vol. 49, No. 2

Optical Defects in Diamond:
A Quick Reference Chart


ABSTRACT

Gem diamonds owe much of their value to their color, or lack thereof. Defects in the atomic structure of diamond are responsible for this color and are important for the identification of color treatments. This article and its tables are intended as a quick reference for gemologists as they read about various common diamond defects in the gemological literature.

INTRODUCTION

Despite the commercial value of natural-color diamonds, distinguishing them from treated diamonds remains a significant identification challenge. While some diagnostic visual features exist (inclusions, color or growth zoning, and absorption bands seen with a spectroscope), the separation of natural from synthetic or treated diamonds is not always possible using standard gemological methods. In such cases, advanced spectroscopic analysis at a professional gem-testing laboratory is required. Imaging of luminescence distribution patterns is also a helpful tool for recognizing synthetic diamonds (Martineau et al., 2004; Shigley et al., 2004).

In a laboratory setting, the identification of diamonds is based mainly on the detection of tiny imperfections in the atomic lattice. These “defect centers” may include foreign impurity atoms (typically nitrogen, and occasionally boron or hydrogen); carbon atom vacancies in the lattice (either single or clusters of neighboring vacancies); carbon atoms positioned in between normal lattice locations (interstitials); and dislocations where planes of carbon atoms are offset from one another due to plastic deformation. Not all of these lattice imperfections create spectroscopic features, but several do so by allowing the diamond to absorb particular energies of incident light or radiation. Defects can occur randomly or in particular locations within the lattice. Diamonds can contain more than one type of defect, and in natural diamonds, defects can be altered over geologic time in the earth or by exposure to heat or radiation during color treatment.

So-called optical defects (or optical centers) cause absorption in the visible or near-visible portions of the electromagnetic spectrum, often producing coloration (e.g., figure 1). Luminescence reactions result when defects absorb higher-energy incident radiation and then reemit lower-energy radiation as visible light. Optical defects occur in very low concentrations in all diamonds, and their presence can be detected using spectroscopic techniques. A theoretically “pure and perfect” diamond containing no such defects would appear colorless.

151465
Figure 1. The red color of the graining in this Fancy red diamond from Brazil is caused by absorption related to the 550 nm band. This band, the most common cause of pink to red color in natural, untreated diamonds, is thought to be the result of a defect created by plastic deformation. Photo­micrograph by Jian Xin (Jae) Liao; magnified 50×.

As a quick reference for gemologists, table 1 lists the most common lattice defects, including those that can create color and/or luminescence reactions in diamond. The scientific name of the defect, as well as the wavelength (or wavenumber) and electron volt (eV) positions of the main and associated spectral bands, are shown along with photos of representative diamonds. The most common spectroscopic technique used to detect the defect center is indicated by a code shown in italics.

Important optical defects in diamond and their effect on color and luminescence

Download a Larger Version of this Optical Defects Chart

Table 1. Important optical defects in diamond and their effect on color and luminescence. 

Some precautions should be kept in mind when using this table. Each lattice defect is known to produce a particular diamond color or luminescence. For instance, the GR1 center produces green or blue-green color. But the reverse is not necessarily true—for example, not all green diamonds owe their color to the GR1 center. In fact, there are several causes of green color. In some cases, a diamond contains more than one optical defect, and its color stems from a combination of defects. In other cases, a diamond’s color may arise from absorption caused by one optical center, while its luminescence may result from another optical center.

Table 2 provides a comparison of the most common spectroscopic techniques for diamond characterization. For further reading on color in diamond, the Additional Reading list serves as a reference guide to access the much larger range of gemological and technical literature on diamond identification.

Spectroscopic techniques for characterizing lattice defects in diamond.

Dr. Shigley is a distinguished research fellow, and Dr. Breeding is a research scientist, at GIA’s laboratory in Carlsbad, California.

Collins A.T. (2001) The colour of diamond and how it can be changed. Journal of Gemmology, Vol. 27, No. 6, pp. 341–359.

——— (2003) The detection of colour-enhanced and synthetic gem diamonds by optical spectroscopy. Diamond and Related Materials, Vol. 12, No. 10/11, pp. 1976–1983, http://dx.doi.org/10.1016/     S0925-9635(03)00262-0.

Cunningham D. (2011) The Diamond Compendium. NAG Press, Robert Hale Ltd., London.

Deljanin B., Simic D., Zaitsev A., Chapman J., Dobrinets I., Widemann A., del Re N., Middleton T.,

Deljanin E., De Stefano A. (2008) Characterization of pink diamonds of different origin: Natural (Argyle, non-Argyle), irradiated and annealed, treated with multi-process, coated and synthetic. Diamond and Related Materials, Vol. 17, No. 7/10, pp. 1169–1178, http://dx.doi.org/10.1016/j.diamond.2008.03.014.

Eaton-Magaña S., Post J.E., Heaney P.J., Walters R.A., Breeding C.M., Butler J.E. (2007) Fluorescence spectra of colored diamonds using a rapid, mobile spectrometer. G&G, Vol. 43, No. 4, pp. 332–351, http://dx.doi.org/10.5741/GEMS.43.4.332.

Fritsch E. (1998) The nature of color in diamond. In G.E. Harlow, Ed., The Nature of Diamonds. Cambridge University Press in association with the American Museum of Natural History, New York, pp. 23–47.

Hofer S.C. (1998) Collecting and Classifying Coloured Diamonds: An Illustrated Study of the Aurora Collection. Ashland Press, New York.

Martineau P.M., Lawson S.C., Taylor A.J., Quinn S.J., Evans D.J.F., Crowder M.J. (2004) Identification of synthetic diamond grown using chemical vapor deposition (CVD). G&G, Vol. 40, No. 1, pp. 2–25, http://dx.doi.org/10.5741/GEMS.40.1.2.

Shigley J.E., Breeding C.M., Shen A.H. (2004) An updated chart on the characteristics of HPHT-grown synthetic diamonds. G&G, Vol. 40, No. 4, pp. 303–313, http://dx.doi.org/10.5741/    GEMS.40.4.303.

Tappert R., Tappert M.C. (2011) Diamonds in Nature: A Guide to Rough Diamonds. Springer, New York, pp. 45–68.

Zaitsev A.M. (2000) Vibronic spectra of impurity-related optical centers in diamond. Physical Review B, Vol. 61, No.19, pp. 12909–12922, http://dx.doi.org/10.1103/PhysRevB.61.12909.

——— (2001) Lattice Defects in Diamonds: A Data Handbook. Springer-Verlag, Berlin.